Trade in Fremont society: contexts and contrasts

Joel C. Janetski*

Department of Anthropology, Brigham Young University, Rm 946 SWKT, Provo, UT 84602, USA

Received 9 March 2001; revision received 26 September 2001; accepted 5 February 2002

Abstract

Marine shell, turquoise, exotic ceramics, and toolstone, and raw minerals are common in archaeological assemblages generated by the Fremont, small scale farmers and foragers who occupied the eastern Great Basin and Colorado Plateau of western North American between AD 400 and 1300. Although researchers routinely describe such artifacts, little attention been paid to the means whereby these items were acquired or the implications those mechanisms have for understanding Fremont socio-economic patterns and relations. This paper presents the spatial patterning of both local and exotic goods from Fremont occupations and offers a range of social contexts for exchange as well as contrasts with Virgin Anasazi contexts for such goods. A trade fair/festival model is proposed as an important mechanism or context for the distribution of exotics at Fremont sites. © 2002 Elsevier Science (USA). All rights reserved.

Keywords: Fremont; Trade; Trade festivals; Great Basin; Colorado Plateau

Speech for Good Trading (Tewa Song)
Now Round about I guess you are,
You enemy people of strange speech
Such as you O Utes, such you O Kiowas
Such as you O Comanches,
such as you O Cheyennes,
Such as you O Pawnee, where you are,
Such as you, O warring peoples all!

So now from here I think of you,
From here I call aloud your names,
With money to trade for your good work
Of aching backs and sweating brows.
And when your village we have reached,
And you have something not for sale,
Easily may it come into our hands!

This what we wish and therefore
I speak now that this to us may happen. (Spinden, 1993, p. 104)

Introduction

The archaeologically defined Fremont culture developed north of the Colorado and Virgin River drainages by 400 AD and persisted for nearly a millennium (Fig. 1). Farming was an important, albeit variable, part of the subsistence economy over much of the area, although hunting, fishing, and gathering contributed significantly to the diet (Madsen, 1989; Madsen and Simms, 1998). Grayware ceramics reminiscent of Southwestern traditions, pithouse villages, adobe and masonry granaries, and a distinctive art style are the material hallmarks of the Fremont period (see Marwitt, 1986). In addition, exotic items (marine shell, turquoise, jet, Anasazi ceramics), local minerals, and non-local Fremont ceramics are common if not abundant in Fremont archaeological assemblages and suggest that the acquisition and distribution of these material goods was ongoing. In fact, exotics increase significantly at the onset and
largely disappear at the demise of the Fremont period (Janetski, 1994). Importantly, it is the presence of these items along with a recognizable style visible in ceramics, figurines, rock art, beads, pendants, gaming bones, and functionally enigmatic items that give Fremont its unique flavor. Despite the presence of exotic materials, Fremont researchers have seldom demonstrated more than a passing interest in trade (for example, Madsen, 1979, 1989; Madsen and Simms, 1998; Marwitt, 1970, 1979; Simms, 1986). Consequently, the potential range of contexts for exchange in Fremont society as well as the role it may have played in cultural processes and change remains to be explored. Exchange, of course, consists of more than the movement of goods across the landscape; it is a “form of interaction that creates and reflects specific socioeconomic linkages between individuals, groups, and societies” (Irwin-Williams, 1977, p. 142). The patterned distribution of stylistically distinctive material remains in time and space, then, can be an important avenue to seeing the extent of such socioeconomic linkages. Viewed in this way, that is, as a region of social and economic interactions, exchange may serve an important complement to more traditional views of the Fremont (Adovasio, 1979; Aikens, 1979; Janetski and Talbot, 1997; Madsen, 1979, 1989; Madsen and Simms, 1998; Marwitt, 1970, 1979; Simms, 1986).

Fremont archaeological remains—pit houses, painted and corrugated ceramics, elaborated storage architecture, reliance on horticulture—and inferred social patterns are reminiscent of Southwestern patterns (Janetski and Talbot, 1997), a fact that has resulted in the inclusion of Fremont in regional syntheses since Kidder (1924); see also Cordell (1997). Studies of exchange systems in Southwest societies might, therefore, be useful in understanding Fremont socio-economic issues in as much as they have contributed significantly to understanding of Anasazi and Hohokam social relations (Crown, 1991; Ericson and Baugh, 1993 McGuire et al., 1994; Neitzel, 1989; Toll, 1991; to cite a few). For these reasons, this paper will invoke both the Southwest and Great Basin literature in the following discussions.

Small scale societies and exchange

As intimated, exchange in small scale (band and tribal) societies is not solely economic; rather it is intertwined with social obligations, kinship, politics, and peace making (Mauss, 1990; Sahlins, 1972). Sahlins’s (1972) classic treatment of economics in pre-capitalist societies makes clear that redistribution of commodities cannot be understood apart from social context. Circumstance, kinship, and history all play a part in determining direction, quantity, and quality of the flow of goods. Sahlins’s (1972, p. 191) “Scheme of Reciprocities” reflects the array of circumstances and expectations that surround gift giving and trade.

Exchange played an important role in relaxing tensions between unrelated groups. Marshall (1961, p. 245) relates a Bushman perspective: “The worse thing is not giving presents. If people do not like each other but one gives a gift and the other must accept, this brings a peace between them. We give what we have. That is the way we live together.” Viewed in this light, exchange assumes diplomatic dimensions apart from economics.

Trade events typically included or concluded with feasts, a pattern exemplified by numerous cases. To cite just two: North Alaskan trade fairs concluded with the Messenger Feast, and the Pomo of California participated in trade-feasts during which foodstuffs, especially fish, were traded for shell or stone beads (Vayda, 1967). Feasts were associated with most gatherings in the Great
Basin/Colorado Plateau region: the Sun Dance (Ute), Datura ceremony (Southern Paiute/Chemehuevi), Bear Dance (Ute), Girl’s Dance (Washo) all concluded with feasting (see Jorgenson, 1986 for brief descriptions). The social, political, and economic blended on these occasions.

A functional aspect of this blending is exchange relations as a means of risk reduction (Cashden, 1990; Wiessner, 1982). The uncertainties of life among hunter-gatherers and subsistence farmers required the maintenance of fall-back strategies, often including exchange for food, either indirectly or directly. Sahlins has argued that food moved mostly in generalized rather than balanced exchange. He states as principle “...one does not exchange things for food, not directly that is, among friends and relatives. Traffic in food is traffic between foreign interests.” (Sahlins, 1972, p. 216). Spencer’s account of restrictions on trade in food among the Alaskan Eskimo illustrates this notion:

Again, the feeling was present that to trade for food was reprehensible, but since each setting had its own specialties, this attitude was in some measure obviated...The pattern with respect to food was less concerned with formal exchange. It was used to cement good relations between partners and when given as a gift, the notion of trading for food was avoided. (Spencer, 1976, p. 199)

Spencer’s statement that “each setting had its own specialties” anticipates circumstances wherein food would be an exchange commodity: ecologically or economically contrasting regions. Ethnographic examples of trade flourishing in such circumstances suggest the importance of food as a commodity but expectations varied with social distance. Indirect trafficking in food was practiced by !Kung hunter-gatherers through **hxaro** exchange (Lee, 1979; Wiessner, 1982). This system provided access to alternative resource areas and maintained obligations to even out differences in resource abundance in times of localized shortfalls. In this system socio-economic relations were maintained through delayed return gifting that anticipated future need. Although non-food gifts were common, the importance of considering location in choosing partners emphasizes food sharing as a critical component of the system (Wiessner, 1982, p. 74).

Direct trade in food is most evident when, in contrast to the !kung gift exchange, consumables cross ethnic boundaries. Examples include the Mandan/Arikara-Plains and Plains-Pueblo exchange relations which illustrate ecologically complementary or mutualistic relationships as in both cases garden produce of farmers moved against meat and hides brought by hunters (Spielmann, 1991; see also discussion of feasting as related to ritual as well as long distance exchange in Potter, 2000 and references therein). Likewise, Huron farmers of the Great Lakes region maintained multiple exchange relations with Iroquois to the south and Algonkian peoples to the north to obtain locally scarce meat, fish, and hides or additional maize supplies (O’Shea, 1989). Davis (1974, p. 11) notes that food was the class of materials most frequently traded by native Californians, although the ecological differences of those trading is not immediately apparent. Clearly food was a common component in traditional exchange between and among farmers and hunting and gathering peoples, although protocols varied with social circumstances (Winterhalder (1997) also points out that food is, at times, an exchange item and argues for understanding exchange in material terms]. Ford (1983, pp. 715–717) provides excellent insights into subtle shifts in expectations as goods or services were provided for relatives, friends, nonrelatives but fellow villagers, and those from other villages or tribes.

In summary, exchange was embedded in the social and economic fabric of band and segmentary societies. It enriched lives socially and made life more secure by reducing hostilities and the risk of shortfalls of both food and non-food items. Exchange cemented relations and obligated recipients to offer hospitality to givers. Material evidences of traveled goods should conjure up images of such activities. The archaeological evidence of exchange is highly variable and necessarily under represents the extent of such behavior, since perishable trade items (especially food) are usually invisible in the archaeological record. However, the presence of non-local materials in excavated assemblages provide an empirical base for discussing the direction and mechanisms for Fremont trade, both long distance and more local or regional.

Exchange mechanisms: some ethnographic examples in Western North America

Several models that describe mechanisms and social contexts of prehistoric exchange are present in the ethnographic literature for western North America and provide potential analogues for the
Fremont case. Hughes and Bennyhoff (1986), for example, discuss exchange for the ethnographic Great Basin and conclude that exchange here was accomplished either by casual bartering between individuals or during festivals. The ubiquity of casual bartering is suggested by the journals of early Spanish explorers Dominguez and Escalante (Warner, 1976). Southern Paiute in the St. George area, for example, wanted to trade strings of turquoise and shell and told the Spanish that their nets had been obtained through trade from groups to the south (Warner, 1976, p. 81). These accounts suggest some trade occurred on a simple encounter basis without formal or elaborated circumstances. Such exchange would suggest a down-the-line model of goods moving from person to person with only a few having direct access to the source of the goods. However, Hughes and Bennyhoff (1986, p. 238) state that most traditional trade activities took place during more organized festivals (see below).

Given the suggestion of Southwest influences in the Fremont area, documented exchange mechanisms for Puebloan and Athapaskan peoples to the south of the Fremont are of interest. Ford (1983) has described a complex system of exchange in the Southwest intertwined with social relations, social distance, and scale. He notes that mechanisms or modes of exchange shift depending on whether trade is occurring within communities, between communities, or between tribes (Ford, 1983, p. 715). ‘‘Mutual assistance, gambling and gaming, ceremonial redistribution, and trading parties’’ are identified as mechanisms for intravillage exchange. Mutual assistance or sharing along with community gambling were the most common exchange activities within the village, although gambling was clearly very important during trade fairs as well (see below). Ceremonial redistribution (the giving of gifts during life events such as birth, puberty ceremonies, marriage, and death) occurred less often, but was important in establishing social or political positions of prestige by lineage leaders (see McGuire, 1995, p. 49). Trading parties, a ‘‘quasi-market’’ held within Hopi villages, seems peculiar to a few Puebloan communities.

Formally scheduled festivals were important occasions for intercommunity trade and trade fairs along with expeditions facilitated movement of goods over long distances. Haggling and expectations regarding immediacy of payment increased with social and literal distance. The latter could be ameliorated by establishing quasi-kin or trade partner relations with individuals in distant villages. Ford (1983) explores interesting ecological, economic, and social nuances of these patterns, but it is clear that exchange was important and well-developed in the ethnographic Southwest.

The complexity and range of mechanisms operating in the ethnographic Great Basin and Southwest are daunting to archaeologists attempting to understand past exchange patterns. It seems that patterning might be most visible over large regions which, in turn, suggests that the ethnographic mechanisms that facilitated long distance trade, or trade between tribes (see Ford’s examples above), might provide the most testable analogues. A discussion of both regional and intracommunity exchange mechanisms is offered below.

Long distance exchange: trade festivals

The social and economic events termed trade fairs are widely documented in Australia, Alaska, California (Jackson, 1991; Wood, 1980), and closer to the Great Basin, at the Big Camas Prairie on the Snake River (cf. Murphy and Murphy, 1960; Statham, 1982; Steward, 1938). In more complex societies, feasting and trading festivals took on a competitive air and a means for building prestige and status (various in Hayden, 1992, 1995) or a combination of prestige building and risk reduction (Upham, 1982, p. 122). Accompanying the feasting and bartering were the usual social activities of sweat bathing, gambling, races, and dances. Trade fairs or festivals lasted several days and were undoubtedly high points of the year for the participants.

Ford (1983; see also various in Spielmann, 1991) identifies festivals or trade fairs as important mechanisms for both intervillage and long distance exchange in the Southwest. Trade fairs were held at Taos and Pecos as well as other pueblos and were attended by various nomadic groups (Comanche, Apache, etc). Here traditional enemies met together under truce to exchange goods, especially foodstuffs, but also objects necessary for ritual activities (Ford, 1983; Simmons, 1979). The Pima held similar fairs in the Phoenix area (Ford, 1983, p. 719). The Southwest trade fair pattern intensified and was controlled in part by the Spanish to enhance economic purposes in the 1700s (see Levine, 1991). Fairs were held in the late summer and fall when agricultural products were ready and bison hides and meat were available (Simmons, 1979, p. 189).
Fall was also the usual time for festivals in the Great Basin as the pine nut crop was in and rabbits were fat and available through drives (cf. Steward, 1938). However, in areas of significant fisheries, festivals were held in the spring during the spawning runs. At Utah Lake on the eastern edge of the Great Basin in central Utah, for example, the availability of spawning fish was an occasion for the gathering of Utes from neighboring valleys. An early pioneer journal provides important details:

We soon found out that [the] Provo River region was the great gathering place of all Ute tribes of central Utah valleys, too, on account of the wonderful supply of fish moving up the stream from the Lake to their spawning grounds every spring—...While these Bands of Indians met each spring for fishing, they engaged in good sporting as well, horse-racing, trading, gambling, foot racing, wrestling, etc. Some spent weeks here. (Bean, 1945, pp. 51–52)

Compare the above with descriptions of annual trade visits on the Plains of North America between the Sioux and the Arickara by Edwin T. Denig in the 1830s (Ewers, 1973, p. 47). The corn-farming Arickara lived in villages on the Missouri River and the Sioux brought buffalo robes, skins, meat, and other commodities that they traded for corn. Denig states, “When these nations meet, however, the one well supplied with corn and the other with robes, the times are lively, feasting and dancing goes on constantly, both in the village and camp—horse racing, gambling in many ways.”

Gambling during festivals is of special interest. Wood (1980, p. 106) states that “Gambling at trading fairs was rampant” Nearly all accounts of fairs, festivals, or social gatherings mention gambling and, given that archaeologically recoverable evidences of these festivities are few, the recovery of gambling paraphernalia, such as gaming bones or dice, is important. At Fort McKenzie (initially Fort Piegan), a small trade fort established on the upper Missouri in the 1830s, excavations recovered trade goods of all sorts ranging from glass beads to dentalium shells and clay pipes (Shumate, 1973; Wood, 1977). Among items recovered were numerous gaming bones representing the four-stick-game or travois gambling (Wissler, 1911). Hunt (1985) reports identical gaming bones from Fort Union several hundred km down the Missouri at the mouth of the Yellowstone. These bone counters alone document the ubiquitous gambling activities that occurred there and, by extension, the large social gatherings at these historic trade centers. The gambling was in itself a mechanism to redistribute goods among trade fair attendees (Wood, 1980).

Intracommunity exchange

Although an annual festival model could explain significant portions of Fremont trade activity (especially that between more distant groups), Ford’s (1983) description of intracommunity exchange suggests that sharing and gaming among members of a village may have been the most common mechanisms at work in the past. These behaviors would have moved items from household to household based on luck and good will. Archaeological consequences of these activities relative to the distribution of exotics and other goods would be to almost randomize their occurrence within the community.

Ceremonial redistribution in the aboriginal Southwest, although apparently less common than gambling and sharing, was important not only for the exchange of material goods, but, as noted above, also as a means to validate social position. As in the Southwest, Great Basin aboriginal peoples made gifts on the occasion of birth, puberty rites, marriage, and death. Ute and Southern Paiute fathers often gave up first gambling winnings following the birth of a child (Stewart, 1942, p. 307). Bride wealth payments, although not formalized, were common among the Southern Paiute (Kelly, 1964, p. 99) and were the tendency among many Great Basin groups. With the exception of death, these events and the associated social actions may be difficult to identify in the archaeological record. Nonetheless, the assumption made here is that such activities occurred and commodities were circulated as a result. Burial goods, of course, mark the final life event and are sometimes provided to symbolize the status of the deceased (for a discussion, see Brown, 1981). The traditional wisdom regarding the relationship between status and burial goods is that individuals of higher special status (achieved or otherwise) would be accompanied in death by greater quantities or different kinds of goods and/or unique or prestigious burial locations (Brown, 1981, p. 29).

Summary and archaeological implications

At a minimum, these ethnographic patterns suggest directions for building models that might
describe cultural contexts for past systems of exchange, although they should not be applied indiscriminately. Hughes (1994, p. 377) has noted the limitations of such models for understanding the past, but clearly the ethnographic data offer a starting point. Given that exotics are more obvious trade items in the archaeological record, efforts at modeling long distance trade may be more successful than would be identifying patterns of intravillage commodity exchange.

Renfrew (1977); see also Renfrew and Bahn (2000) has described several rather different models for long distance trade and the archaeological consequences or expectations in terms of the distribution of items across the landscape or from site to site. Two seem useful in a discussion of Fremont acquisition of exotics: (1) down-the-line trade and (2) directional trade. Down-the-line trade is governed by the law of monotonic decrement, which states that the abundance of the goods being traded will remain somewhat stable within the supply zone and then diminish in geometric fashion as one moves away from the source of goods (Renfrew, 1977). This pattern would suggest little in the way of elaborate social or economic mechanisms to move goods. In contrast, directional trade describes a pattern wherein goods flow to a central place, bypassing smaller or secondary settlements, and are distributed from there. Rather than a direct fall-off in abundance of goods as one moves away from the source, directional trade results in “departures” from the fall-off curve. This pattern could argue for the presence of a festival model especially if combined with evidence for communal activities such as gambling. The contrast between these two models is presented in Fig. 2. The data available to test these models are presented below.

Fremont trade

Evidence for long distance trade

Long distance or inter-regional trade is defined here as the acquisition of non-local or exotic goods through transactions between people within the Fremont area and others, such as the Anasazi or unnamed groups to the west, north or east.\(^1\) Intra-regional exchange, on the other hand, would move those goods from group to group within the region. The exotic commodities that can be documented archaeologically are marine shell, principally *Olivella*, turquoise, and Anasazi ceramics. The occurrence of these in Fremont sites is discussed below. Fig. 3 displays the region under discussion and the location of archaeological sites mentioned in the text. Included in Fig. 3 are several Anasazi sites mentioned later in the paper to illustrate Fremont—northern Anasazi differences. Fig. 3 also makes clear that the Fremont culture is largely restricted to Utah north of the Colorado and Virgin Rivers.

Marine shell

Marine shell is common in Fremont contexts throughout Utah, although quantities tend to be low (see Table 1 for numbers and references). *Olivella* (*O. biplicata, O. baetica and O. dama*) is by far the most abundant genus, but abalone, clam, and cerith shell ornaments also occur, albeit rarely (Fig. 4). Numbers vary from site to site with the normal occurrence being a few beads or pendants per structure. At Five Finger Ridge (one of the Clear Creek sites), for example, 20 *Olivella* shell beads were scattered over 11 structures for an average of 1.8 beads per structure. A single pit structure at Woodard Mound in north central Utah, on the other hand, contained 22 *Olivella* beads, while 112 were recovered from various contexts at Baker Village. The 164 *Olivella* beads at Caldwell Village in the Uinta Basin came from a single necklace.

\(^1\) The challenge here is to avoid ethnic assumptions for “Fremont people.” Ethnic diversity in the region could be as complex as that seen within the northern Rio Grande Pueblos, for example, or as simple as that in the ethnographic eastern Great Basin. By stating that long distance trade was between the Fremont and Anasazi, the implication is that these are two distinct ethnic groups and such may have not been the case, although the archaeological record demonstrates both material and non-material differences.
What was the source of these shells? *Olivella* occurs on the Pacific Coast of California as well as in the Gulf of California. These small shells were widely used and traded by the Indians of California and the western Great Basin (Bennyhoff and Hughes, 1987; Hughes and Bennyhoff, 1986) and were likely obtained by Fremont peoples via trade networks. Both northern and southern trade routes for moving shell into the eastern Basin have been proposed by Hughes and Bennyhoff (1986) (see also Lyneis, 1984; Malouf, 1940; Tower, 1945). The northern route crossed the Sierras in the vicinity of Lake Tahoe and the Great Basin via the Humboldt River reaching the Wasatch Front by skirting the northern shore of the Great Salt Lake. An additional northern route into Utah may have been up the Columbia—Snake River system and then south by the Portneuf and Malad Rivers. The southern route traveled directly east from Los Angeles to the Colorado River then northward into Utah along the Virgin River and the Wasatch Front. Other routes certainly existed, but these river ways were probably the primary avenues for the movement of people and trade goods. Given that northern shells such as *Dentalium* and *O. baetica* are more scarce than those
from southern waters (*O. dana* and *O. bippilicata*), the southerly route appears more important during the Fremont period.

Turquoise

Although less common than marine shell, turquoise is present in several Fremont sites (Table 2, Fig. 5). Turquoise occurs almost always as beads or pendants with even small fragments exhibiting some modification. Since turquoise was not available in surface mines in Utah, all turquoise from Fremont sites is exotic and obtained from mines in Nevada, California, Arizona, Colorado, or New Mexico (Harbottle and Weigand, 1992).

Table 1

Occurrence of *Olivella* and other marine shell ornaments at Fremont sites north of the Colorado/Virgin Rivers

<table>
<thead>
<tr>
<th>Location</th>
<th>Olivella</th>
<th>Abalone</th>
<th>Cerith</th>
<th>Clam</th>
<th>Other</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado Plateau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caldwell Village</td>
<td>164</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Ambler (1966)</td>
</tr>
<tr>
<td>Gilbert Site</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Shields (1967)</td>
</tr>
<tr>
<td>Whiterocks Village</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Shields (1967)</td>
</tr>
<tr>
<td>Huntington Canyon</td>
<td>11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Montgomery and Montgomery (1993)</td>
</tr>
<tr>
<td>Snake Rock</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Aikens (1967)</td>
</tr>
<tr>
<td>Poplar Knob</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Taylor (1957)</td>
</tr>
<tr>
<td>Round Spring</td>
<td>44</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Metcalf et al. (1993)</td>
</tr>
<tr>
<td>Turner Look</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Wormington (1955)</td>
</tr>
<tr>
<td>Combs Village</td>
<td>122</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>36</td>
<td>Lister et al. (1960), author analysis</td>
</tr>
</tbody>
</table>

Eastern Great Basin						
Bear River No. 1	2	—	—	—	—	Aikens (1966)
42WB144	4	—	—	—	—	Simms et al. (1997)
42WB32	4	—	—	—	—	Fawcett and Simms (1993)
Woodard Mound	22	—	—	—	—	Richens (1983)
Benson Mound	13	—	—	—	—	Bee and Bee (1934–1966)
Peav Mound	3	—	—	—	—	Bee and Bee (1934–1966)
Hinckley Mounds	1	—	—	—	—	Berge (1966)
Grantsville	1	—	—	—	—	Steward (1936)
Tooele	2	—	—	—	—	Gillin (1941)
Nephi Mounds	6	—	—	—	—	Sharrock and Marwitt (1967)
Kanosh	4	—	—	—	—	Steward (1936)
Backhoe Village	1	—	—	1	—	Madsen and Lindsay (1977)
Five Finger Ridge	20	—	—	—	—	Talbot et al. (1997)
Radford Roost	7	—	—	—	—	Talbot et al. (1999)
Icicle Bench	2	—	—	—	—	Talbot et al. (1999)
Marysville	3	—	—	—	—	Gillin (1941)
Baker	112	Frags(?)	—	1	15	Wilde and Soper, 1999
Garrison	2	—	—	—	—	Taylor (1954)
Paragonah	50+	—	—	—	—	Judd (1919, 1926); Meighan et al. (1956)
Evans Mound	17	1	1	1	—	Dodd (1982); Alexander and Ruby (1963)

Fig. 4. Selected marine shell beads from Baker Village.
Two Fremont sites are exceptional in terms of the quantities of turquoise recovered: Five Finger Ridge, a late Fremont site in Clear Creek Canyon, south central Utah, and Baker Village on the border of Utah and Nevada. Excavators recovered 53 pieces of turquoise from 27 structures (21 pit houses) at Five Finger Ridge (Talbot et al., 1997). The intrasite occurrence of the turquoise at Five Finger Ridge is wide spread rather than concentrated; e.g., no more than four turquoise artifacts were found in any one house. All but two of the 53 items were found in pit houses; the majority came from fill rather than floor contexts. There is no evidence of working turquoise and the occurrence (almost exclusively in residences) suggests no stockpiling. In other words, the inhabitants of Five Finger Ridge seem to have been consumers of turquoise ornaments rather than producers. Thirteen pieces of turquoise came from Baker Village where the distribution contrasts somewhat with that from Five Finger Ridge as six of the 13 samples came from granaries with the others from pit houses.

Neutron activation analysis of turquoise samples from Five Finger Ridge suggests Fremont - Southwest connections (Table 3) (Harbottle, 1995; Janetski, 1997). The analysis concluded, first of all, that the samples were indeed turquoise. The results also suggested that: (1) most turquoise artifacts from the site were coming from the same sources that were supplying both Chacoan and Hohokam peoples, (2) at least some of the turquoise found in both Fremont as well as Southwestern sites may have ultimately come from Nevada mines, (3) Fremont exchange connections may have been as much to the southeast as to the southwest. However, given the possibility that the turquoise came from Nevada, connections to west cannot be ruled out. The data here are tantalizing, but highly preliminary, since it can be assumed that turquoise ornaments were rather carefully curated (although one wonders why so many were lost at Five Finger Ridge) and widely traded. Consequently, these ornaments may have a long and well-traveled history and suggesting direct trade or contact with the matches detailed in Table 3 would be simplistic.

Anasazi ceramics

Anasazi ceramics occur in low numbers (less than 1% of the ceramic assemblage) throughout the Fremont area as far north as Utah Valley (cf. Woodard Mound, Richens, 1983). Exceptions are the Bull Creek sites where significant percentages of Anasazi ceramics, especially Tusayan wares,
occur (see McDonald, 1994, p. 224 for a summary, although Geib, 1996 suggests the quantities of Anasazi wares here may be much lower) and the Great Salt Lake sites (Bear River 1, 2, and 3, Levee and Knoll, Injun Creek) where no Anasazi sherds were recovered. Anasazi ceramics are scarce (less than 1%) even in Parowan Valley, despite the close proximity to Anasazi sites to the south (various, but see Dodd, 1982; Marwitt, 1970).

Interesting evidence of interaction between Fremont and Anasazi comes from Coombs Village, a Kayenta Anasazi site on the Colorado Plateau (Lister et al., 1960). Here excavators found 22 whole or restorable Ivie Creek Black on White bowls indistinguishable from Ivie Creek ceramics found 80 km north at Snake Rock (Ai-kens, 1967, p. 21; Lister et al., 1960, p. 216) and five Fremont jars. Jennings (1966, p. 56) points out that 10% of the whole vessels from Coombs are Fremont. Although the proveniences of the Fremont vessels at Coombs appear unremarkable in that they were found in rooms and burials in contexts similar to Kayenta vessels, the numbers of bowls is surprising given the usual percentages of painted to gray wares in Fremont sites (Lister et al., 1960, pp. 215–216). Some movement of material goods from Coombs to the north is also evident at Snake Rock Village where a few Coombs Variety sherds were found. Whether the bowls were trade items or contained goods that were being traded is not known (the latter seems more likely given the disposal pattern of the bowls). Certainly, however, here is evidence of contact and the movement of exotic goods (in this case Fremont ceramics) moving into the Anasazi sphere from the Fremont region. What might have moved the other direction, that is, back to the north in exchange (if anything) is not known. It does not appear to have been Coombs pottery.

Change through time

A concern in this paper is that the data are presented as though they are synchronic, which is not the case. Table 4 presents the occurrence of exotic items by coarse time periods, AD 500–900, AD 900–1100, AD 1100–1300. The total numbers of exotics argue for an increase in quantities through time. However, the numbers of sites excavated from each of these time periods biases the picture; that is, more Middle and Late sites have been excavated than Early sites (see for example, Janetski et al., 1997, Appendix B). The middle period is greatly bolstered by the find of 164 Olivella beads at Caldwell Village which likely dates to the mid tenth century AD based on the presence of early Pueblo II ceramics. Turquoise appears to occur late in the Fremont sequence (post-AD 1100). Baker Village (Wilde and Soper, 1999) and Five Finger Ridge account for nearly 90% of Fremont turquoise and both sites date to after AD 1100. Of course, the sample is so small that the temporal distribution of turquoise could change with even one or two additional finds. If this tendency for the occurrence of turquoise to be late in Fremont contexts is valid, the heaviest Fremont use of turquoise appears to post-date the heaviest use of the mineral in the Southwest (Harbottle and Weigand, 1992, p. 81; McDonald, 1994; Weigand and Harbottle, 1993). The bulk of the turquoise recovered in the Southwest is from Chaco Canyon (cf. Toll, 1991, p. 81) and dates to between AD 900 and 1150. The bulk of the data presented here represent roughly a 300 year time span (AD 1000–1300).

Evidence for local and regional trade

Obsidian

Obsidian is often used to trace the movements of people and goods across the landscape, since it can be sourced to specific volcanic flows. Primary
obsidian flows exploited during Fremont times are Topaz Mountain, Black Rock, Mineral Mountains, Modena (all in western Utah), and Malad in southern Idaho (Fig. 6) (various in Hughes, 1984, 1994; Nelson, 1984; Nelson and Holmes, 1979). Amounts of obsidian in chipped stone assemblages from Fremont sites vary from site to site as do the sources represented. Table 5 lists selected Fremont sites and percentages of obsidian in the total chipped stone assemblage (tools plus

<table>
<thead>
<tr>
<th>Exotic items time period</th>
<th>Marine shell</th>
<th>Turquoise</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late (1100–1300)</td>
<td>264</td>
<td>67</td>
<td>331</td>
</tr>
<tr>
<td>Middle (900–1100)</td>
<td>210</td>
<td>2</td>
<td>212</td>
</tr>
<tr>
<td>Early (500–900)</td>
<td>10</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>484</td>
<td>70</td>
<td>554</td>
</tr>
</tbody>
</table>

Table 4
Occurrence of exotic goods at Fremont sites by time period

Fig. 6. Obsidian sources within and adjacent to the Fremont area (after Nelson and Holmes, 1979) and location of Utah Valley and Clear Creek study areas.
debitage), distance to closest source of documented use, and distance to closest and most distant sources utilized. Source analysis was not always performed so data on sources utilized is variable. Only sites that quantified all chipped stone and amounts of toolstone material were used. If obsidian was present in very small quantities, a value of 0.1% was used. Distances are linear measurements from the site to the sources.

Some patterning is apparent in Table 5. First, it is clear that Fremont sites on the Northern Colorado Plateau seldom contain much obsidian, while those in the Great Basin reflect a much greater use of this toolstone. Logically, this pattern seems best explained by proximity. All Utah obsidian sources are located in the Great Basin and people on the Plateau simply did not have easy access. However, the pattern is more com-

Table 5
Obsidian frequency at selected Fremont sites

<table>
<thead>
<tr>
<th>Site</th>
<th>% Obsidian</th>
<th>km to nearest source</th>
<th>km to nearest utilized source</th>
<th>km to farthest utilized source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Great Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levee</td>
<td>56.9</td>
<td>100 (MD)</td>
<td>100 (MD)</td>
<td>100 (MD)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Knoll</td>
<td>78.2</td>
<td>95 (MD)</td>
<td>95 (MD)</td>
<td>95 (MD)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Bear River 1</td>
<td>50</td>
<td>98 (MD)</td>
<td>98 (MD)</td>
<td>98 (MD)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Bear River 2</td>
<td>66.5</td>
<td>97 (MD)</td>
<td>97 (MD)</td>
<td>97 (MD)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Bear River 3</td>
<td>45.4</td>
<td>102 (MD)</td>
<td>102 (MD)</td>
<td>102 (MD)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>42SL98 (Block 49)</td>
<td>12.3</td>
<td>145 (MD)</td>
<td>145 (MD)</td>
<td>225 (BR)</td>
<td>Talbot et al. nd</td>
</tr>
<tr>
<td>Hinckley Mound</td>
<td>2</td>
<td>124 (TZ)</td>
<td>190 (BR)</td>
<td>250 (MD)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Woodard Mound</td>
<td>4.2</td>
<td>107 (TZ)</td>
<td>107 (TZ)</td>
<td>150 (BR)</td>
<td>Richens (1983)</td>
</tr>
<tr>
<td>Kay’s Cabin</td>
<td>5.6</td>
<td>95 (TZ)</td>
<td>95 (TZ)</td>
<td>170 (MM)</td>
<td>Burnside (2000)</td>
</tr>
<tr>
<td>Backhoe Village</td>
<td>24.2</td>
<td>60 (BR)</td>
<td>60 (BR)</td>
<td>70 (MM)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Mukwitch Village</td>
<td>7</td>
<td>60 (BR)</td>
<td>——</td>
<td>——</td>
<td>Talbot and Richens (1993)</td>
</tr>
<tr>
<td>Icicle Bench</td>
<td>13</td>
<td>45 (MM)</td>
<td>45 (MM)</td>
<td>50 (BR)</td>
<td>Talbot et al. (1999)</td>
</tr>
<tr>
<td>Radford’s Roost</td>
<td>14</td>
<td>42 (MM)</td>
<td>42 (MM)</td>
<td>43 (BR)</td>
<td>Talbot et al. (1999)</td>
</tr>
<tr>
<td>Five Finger Ridge</td>
<td>24</td>
<td>39 (MM)</td>
<td>39 (MM)</td>
<td>41 (BR)</td>
<td>Talbot et al. (1995)</td>
</tr>
<tr>
<td>Lott’s Farm</td>
<td>11.7</td>
<td>42 (MM)</td>
<td>——</td>
<td>——</td>
<td>Hawkins and Dobra (1982)</td>
</tr>
<tr>
<td>Topaz Slough</td>
<td>73.4</td>
<td>40 (TZ)</td>
<td>40 (TZ)</td>
<td>80 (BR)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Garrison</td>
<td>49.4</td>
<td>107 (BR)</td>
<td>107 (BR)</td>
<td>120 (MM)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Baker Village</td>
<td>61</td>
<td>115 (BR)</td>
<td>115 (BR)</td>
<td>130 (MO)</td>
<td>Wilde and Soper, 1999</td>
</tr>
<tr>
<td>Median Village</td>
<td>4</td>
<td>80 (MM)</td>
<td>90 (MO)</td>
<td>90 (MO)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Evans Mound</td>
<td>14.2</td>
<td>80 (MM)</td>
<td>80 (MM)</td>
<td>89 (MO)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Colorado Plateau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caldwell Village</td>
<td>0</td>
<td>280 (TZ)</td>
<td>——</td>
<td>——</td>
<td>Ambler (1966)</td>
</tr>
<tr>
<td>Huntington Cyn</td>
<td>0.1</td>
<td>165 (BR)</td>
<td>——</td>
<td>——</td>
<td>Montgomery and Montgomery (1993)</td>
</tr>
<tr>
<td>Windy Ridge</td>
<td>0.1</td>
<td>177 (BR)</td>
<td>——</td>
<td>——</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Innocents Ridge</td>
<td>0.1</td>
<td>140 (BR)</td>
<td>——</td>
<td>——</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Old Woman</td>
<td>0</td>
<td>120 (BR)</td>
<td>——</td>
<td>——</td>
<td>Taylor (1957)</td>
</tr>
<tr>
<td>Poplar Knob</td>
<td>0.1</td>
<td>120 (BR)</td>
<td>120 (BR)</td>
<td>120 (BR)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Snake Rock</td>
<td>0</td>
<td>130 (BR)</td>
<td>——</td>
<td>——</td>
<td>Aikens (1967)</td>
</tr>
<tr>
<td>Mickey’s Place</td>
<td>22.9</td>
<td>97 (MM)</td>
<td>97 (MM)</td>
<td>102 (BR)</td>
<td>Adams (1996)</td>
</tr>
<tr>
<td>Round Spring</td>
<td>0.1</td>
<td>114 (MM)</td>
<td>114 (MM)</td>
<td>135 (BR)</td>
<td>McDonald (1994)</td>
</tr>
<tr>
<td>Bull Creek</td>
<td>0.1</td>
<td>180 (MM)</td>
<td>——</td>
<td>——</td>
<td>McDonald (1994)</td>
</tr>
</tbody>
</table>

licated than proximity dictating abundance. A look at the distances to the nearest source for Great Basin sites demonstrates that some were using obsidian from sources at least as far away as they are from Plateau sites. In fact, if one tests the intuitive notion that there is a simple linear relationship between obsidian use (represented by percent of obsidian in the chipped stone assemblage) and distance to nearest obsidian source for all sites we find a negative relationship, albeit modest in strength (Pearson’s $r = -0.3453$, $p = 0.076$), suggesting a tendency for an inverse relationship between these two variables. If one looks at only the Great Basin sites where the source data are much better, one finds little correspondence ($r = -0.1276$) between percent of obsidian in the lithic assemblage and distance to nearest obsidian source.

An exception to the pattern of scarce obsidian on the Colorado Plateau is Mickey’s Place, a seasonal site situated in the Fish Lake Basin at 9000 ft asl. Here 23% of the total lithics were obsidian (Janetski et al., 1999). This is in decided contrast with Round Spring (a large structural site 15 or so km to the east of Mickey’s Place) where obsidian constituted less than 1% of the total toolstone (Metcalfe et al., 1993). An explanation for this difference could be functional (summer residential camp versus a more permanent residential site) or geographical. Fish Lake is on the headwaters of the Fremont River, therefore in the Colorado River drainage, but also it is also easily accessed from the west, whereas Round Spring is well within the Colorado River drainage. The obsidian data suggest that people spending summers at Fish Lake during the Fremont period were more strongly connected to residential sites and social groups to the west than were people at Round Spring, although both obtained obsidian from the same sources.

McDonald (1994, p. 239), who provided some of the data for Table 5, concluded that higher percentages of obsidian from sites in the eastern Great Basin argue for direct access while the lower percentages at Plateau sites suggest indirect access. An example of directly accessing obsidian comes from the Clear Creek area in south-central Utah. Here nearly 100% of the obsidian samples analyzed (tools and debitage, $n = 98$) came from the closest sources, Mineral Mountains and Black Rock, both about 50 km to the west (Talbot et al., 1997). However, in some areas such as Utah Valley obsidian was not usually obtained from the nearest source (Topaz), but rather came primarily from Black Rock along with significant percentages from Malad and Mineral Mountain (Fig. 7). These patterns suggest a different mode of obsidian access for the Fremont of Utah Valley. McDonald’s (1994, p. 241) comment that decreased mobility during the Fremont period argues for more intergroup interaction (exchange) and fewer cases of direct access may apply here and is explored in more detail below (see also Earle, 1994, p. 422).

Minerals

Various minerals for use in pigments or decorative items were evidently sought out by Fremont peoples. Reporting of minerals tends to be limited to culturally modified items, although it is clear that raw minerals were being transported to sites for several purposes. Seventeen different minerals (including turquoise) were identified from Five Finger Ridge that were used to make pipes, beads, pendants, pigments, etc. (Talbot et al., 1997). Minerals were found at other Clear Creek Canyon sites, Icicle Bench and Radford Roost, as well as locales to the east (Round Spring Huntington Canyon, Bull Creek, Snake Rock). Most popular was hematite crushed into a red powder and used as a pigment to paint ceramic vessels, grinding stones, bone tools, and other items. Also common are various cuprous stones such as malachite and azurite (and turquoise) of a blue or green color. Occupants of Five Finger Ridge carved chunks of chalky calcite to mimic *Olivella* shell ornaments (Fig. 8), although uses of sulphur, quartz pebbles, etc., remain undetermined. Most minerals recov-
ered from Five Finger Ridge were likely obtained through direct access within 25 km of the site, while turquoise, jet, carnotite, and lignite (a low grade coal) came from outside this radius (Fig. 9). The closest lignite source was probably Salina Creek 60 km northeast of Clear Creek Canyon, while jet and carnotite occur on the Colorado Plateau well to the east (Bullock, 1981). Lignite seems to have been mined solely for the production of beads and caches of this material occurred at Bull Creek (Jennings and Sammons-Lohse, 1981, p. 63) and beads in varying stages of production were found here and in the Clear Creek Canyon sites (e.g., Talbot et al., 1999, p. 112).

Fig. 8. Calcite artifacts from Five Finger Ridge carved to resemble *Olivella* shell pendants.

Fig. 9. Probable source areas for minerals recovered from Fremont sites in Clear Creek Canyon.
The frequency with which minerals occur in Fremont contexts argues that they were important and sought after, although the mode of access for many minerals remains problematic. The simplest explanation is that acquisition was embedded in hunting or other kinds of forays. Some sources are so remote from the site of occurrence that trade seems probable.

Ceramics
Fremont trade also involved non-local, painted and corrugated, Fremont ceramics. This has been suspected for some time, but not rigorously tested. Geib and Lyneis (1996) have cautioned against assuming trade based on macroscopic inspections of temper alone. However, Richens (1997), relying on temper analysis and refiring experiments, has argued that approximately 95% of corrugated and 53% of painted sherds (Fig. 10) recovered from at Five Finger Ridge in Clear Creek Canyon was made outside of Clear Creek Canyon and most likely was imported from Parowan Valley to the south (see also Talbot et al., 1998, p. 48). Similar numbers of imports were found at Radford Roost (87% of corrugated, 75% of painted) and Icele Bench (98% of painted, no corrugated at Icele Bench), also located in Clear Creek Canyon (Talbot et al., 1999). Ceramics from Baker Village appear to argue even more strongly for ceramic trade. Wilde and Soper (1999) (see also Schuster, 1996; Wells, 1993) concludes that at least 35% (and perhaps as high as 85%) of the floor contact ceramics at Baker were imported. These findings are strong arguments for the movement of ceramics, especially decorated wares, between locales within the Fremont region (however, see conclusions by Simms et al. (1997, p. 789) that suggest minimal trade in ceramics).

A model of long distance Fremont trade
The above data argue for the movement of goods within the Fremont region and between the Fremont and people to the south and perhaps to the west across the Great Basin. How do these data support (or not) the models of long distance trade presented earlier: (1) down-the-line trade or (2) directional trade? To test the down-the-line model, some assumption must be made regarding the source of materials. Previous discussions suggested the source of exotic goods (turquoise and Olivella) in Fremont sites lies south and west (e.g., Lyneis, 1984). If the direction and source of those goods is accurate and a down-the-line mechanism is operating, we should expect to see greater numbers of exotics in the southwestern portion of the Fremont area and fewer and fewer as one moves to the north and east. To clarify the pattern, all sites are collapsed to a southwest to northeast straight line. Fig. 11 graphically demonstrates a gradual, although somewhat noisy, fall-off in raw numbers of exotics (combined turquoise and marine shell) from southwest to northeast (Caldwell Village with its single necklace is an exception). This distribution could be interpreted as empirical support for goods moving from the south to the north in down-the-line fashion.

However, within the larger pattern of general decline from south to north there is an additional spatial pattern of sites with relatively larger amounts of exotics interspersed among sites with fewer exotics. If raw numbers are adjusted for volume (e.g., exotics/excavated residence), the fall-off pattern is less clear, while a pattern of higher frequencies in the context of lower frequencies emerges (Fig. 12). Put another way, the pattern is one of occasional blips of high frequency in a landscape of low frequency. A conservative interpretation of this pattern would maintain that such blips are a function of sampling size and/or fortuitous finds. On the other hand, spatial patterning in the distribution of goods being traded can be informative about the mechanisms involved in the exchange. This pattern resembles Renfrew’s directional trade model (Fig. 2).

If the departures from the fall-off model represent a valid pattern (i.e., directional trade),
it could be argued that the pattern supports the notion of central places on the Fremont landscape. In other words, the locales exhibiting higher frequencies of exotics hint at the possibility that these are places where people with items to trade might have congregated. Again following Renfrew (1977, p. 85): “The central place is a locus for exchange activity, and more of any material passes through it (per head of population) than through a smaller settlement.” He goes on to say, “If the archaeological record is formed in proportion to the quantity of material handled, the central place will show a greater frequency than its population alone would warrant, since it is acting as a supply center” (Renfrew, 1977, p. 85). In this last statement, Renfrew is making reference to either central place redistribution or central place market exchange both of which require control of goods and neither of which has been documented for the Fremont, which are traditionally described as egalitarian (Sammons-Lohse, 1981; however, see Barker, 1994; Hockett, 1998; Janetski and Talbot, 1997 for discussions of Fremont social complexity). This pattern could be argued as support for the trade fair or festival (see below). However, it is not being argued that festivals are markets nor is there a suggestion of established control of the trade of items; they provide a time and place for people to congregate and for goods to change hands either through direct bartering or gambling.

Discussion

This paper argues that Fremont peoples were involved in exchange among themselves and with people to the south, specifically with the Anasazi. (This does not deny trade in other directions, but data to support such connections are few at present.) The amount of exotic goods involved is modest. However, it is often assumed that exchange in perishables such as food or hides, robes, slaves, or other archaeologically invisible commodities was occurring and most likely made up the bulk of trade goods (cf. Davis, 1974; Ford, 1983; Hughes and Bennyhoff, 1986; Wood, 1980); therefore, the exotics and more durable goods (minerals) are likely only symptomatic of the larger volume of trade [however, Plog (1989) has argued for caution in such assumptions]. Previous
discussions of exchange in foodstuffs (e.g., Davis, 1974; Spielmann, 1991 and also Small Scale Societies and Exchange section above) argued that trade in food increases in the context of ecological or other contrasts (e.g., farm products vs hides). Kelly’s (1964, p. 90) example of non-farming, Kaibab Southern Paiute trading deer hides to St. George Southern Paiute farmers for corn is a case in point. The former lived in more upland country with few perennial streams while the latter lived in the lower elevations along the Virgin River. The popular model of Fremont variability (Madsen and Simms, 1998) emphasizes strategy differences across space and through time. Strategies shifted depending on the costs of farming versus gathering of wild foods (see also Barlow, 1997). If such variability were operating, one would expect food items to be an important item of exchange much like that seen among the Southern Paiute as well as across ethnic boundaries as exemplified by the Plains and Southwest. Kelly (1964, pp. 86–91) does not specifically mention exchange mechanisms for trade between Southern Paiute bands, but her accounts suggest informal encounter exchange. However, the context for the Plains and Southwest intertribal exchange was the trade fair or festival model (Ford, 1983).

The festival model is attractive for conceptualizing how the Fremont might have implemented exchange between communities and with the Anasazi or other neighbors. Given that resource availability was a critical factor, the timing of festivals in the central and southern portion of the area would most likely have followed the general Great Basin pattern, i.e., in the fall. The locations of such festivals would have depended on resource availability and could have shifted depending on the productivity of certain resources. Places such as Parowan Valley near Cedar City in south-central Utah, the Sevier River Valley in central Utah near Richfield, Utah Valley, and others, are possible choices based on ethnographic patterns, site densities, and/or resource availability. Locations such as the Baker Village site, positioned on what is considered the periphery of the Fremont area seems an especially attractive locale for festivals that could include not only Fremont but also non-farming neighbors to the west. Steward (1938, p. 130), for example, identified nearby Garrison, Nevada, as a location for Western Shoshone festivals. The aggregations in Utah Valley were noted earlier.

The application of a trade fair/festival model can provide useful insights into temporal shifts in
obsidian distribution in the eastern Great Basin. Sourcing of obsidians from Utah Valley in central Utah documented a shift in the direction of obsidian movement through time. During the Fremont era, obsidian came primarily from southern sources (Black Rock and Mineral Mountains); during the subsequent Late Prehistoric, northern obsidians (particularly from Malad) dominate the collections, and obsidian from Brown’s Bench in Idaho and the Yellowstone region appear for the first time (Fig. 7) (Janetski, 1994; Nelson, 1984; Nelson and Holmes, 1979). Importantly, Topaz Mountain obsidian, which is closer to Utah Valley than either the Black Rock/Mineral Mountain or Malad sources, is only present in modest amounts during either period. These patterns suggest two things: (1) the inhabitants of Utah Valley did not directly access obsidian during either the Fremont or Late Prehistoric periods but obtained this commodity through intermediaries, and (2) for some reason relations shifted to the north after A.D. 1300 or 1400. One has only to invoke a change in who was attending festivals to account for the shift in goods present. A more northerly swing of social and economic relations following the demise of farming would account for the surge in northern obsidians in Utah Valley during the Late Prehistoric. It is possible the variable patterning in obsidian in lithic assemblages (which seems unrelated to proximity to obsidian sources) could be explained in part by socio-economic relations; however, an additional critical variable would be the availability and proximity of other toolstone quarries. This possibility remains to be explored.

Recognizing exchange activities archaeologically (other than through the presence of nonlocal items) is challenging as is devising material tests of the festival model. The earlier discussion of trade and exchange in small scale societies provides ethnographic models that might be testable, however. For example, nearly all accounts of festivals or gathering include references to gambling activity (see above), and gambling paraphernalia, especially bone dice, may be evidence of this activity. Bone dice, usually referred to as gaming counters in the Fremont literature (e.g., Dalley, 1970), are common in Fremont worked bone assemblages. In fact, next to bone awls, dice are the most abundant artifact recovered from Fremont sites (Table 6). The dice range in style from being carefully polished with rows of dots or incisings to rather roughly made specimens; center drilling is common (Fig. 13). The abundance of dice is evidence of the importance of gambling and attendant community interaction perhaps at both the intra- and inter-village level, and the occurrence of these gaming pieces along with exotic goods may be primary archaeological residues of events such as trade festivals (cf. Gunnerson, 1969, p. 141; McDonald, 1994, p. 54).

The ethnographic data also predict that direct trade in foodstuffs might be greatest across ecological and ethnic boundaries. Although, recognizing ethnic boundaries is a complex issue, ecological differences are more apparent in the area under discussion. The sharpest natural boundary within the Fremont region is that between the Great Basin on the west and the Colorado Plateau on the east and differences in Fremont material culture from east to west have been noted from the beginnings of Fremont studies (Judd, 1926; Madsen, 1982; Marwitt, 1970; Morss, 1931). Further, Madsen (various, but see especially 1979) has argued that Fremont farmers living in the eastern Basin relied more on marsh and other wild foods while those living on the Colorado Plateau were more committed to corn farming. It is more likely that the better watered eastern Basin had access to a richer resource base, including farm products, and supported a larger population than the Plateau, and these differences in resource availability might have encouraged east-west exchange in consumables. Food might have been traded against deer or mountain sheep hides as in the Southern Paiute case, for example. This expectation is not well met based on the obsidian data presented earlier, however. In fact, the obsidian data suggests the Basin/Plateau boundary was a barrier of sorts. Although some obsidian from western sources found its way onto the Plateau, quantities fall off sharply from west to east (Table 5). It is possible, of course, that the obsidian data are not a reliable indicator of the degree of interaction or of the movement of foodstuffs. Olivella shell, for example, is about equally common in Basin and Plateau sites (Table 1). The ceramic data seem to suggest that interaction was more north to south than east to west, a conclusion also reached by McDonald relying on multiple variables (1994; see the several maps of proposed micro-interaction spheres from pp. 289–296).

On a different note, the suggestion that ceramics and perhaps other bulky items such as hides were produced for trade provokes interesting questions. How, for example, were pots moved from one village to another? A possible ethnographic analogue for the movement of
Table 6
Quantities of certain bone artifacts from selected Fremont structural sites

<table>
<thead>
<tr>
<th>Site</th>
<th>Awls</th>
<th>Eyed needles</th>
<th>Weaving tools</th>
<th>Pendants</th>
<th>Beads</th>
<th>Rings</th>
<th>Tubes</th>
<th>Dice</th>
<th>Figurines/enigmatic</th>
<th>Antler flakers</th>
<th>Harpoons</th>
<th>Antler wedges</th>
<th>Whistles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injun Creek</td>
<td>47</td>
<td>1</td>
<td>3</td>
<td>43</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Bear River 1</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bear River 2</td>
<td>57</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Bear River 3</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Levee</td>
<td>78</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Knoll</td>
<td>14</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Woodard Mound</td>
<td>47</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Nephi</td>
<td>137</td>
<td>42</td>
<td>13</td>
<td>16</td>
<td>46</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pharo</td>
<td>95</td>
<td>6</td>
<td>16</td>
<td>23</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Backhoe</td>
<td>62</td>
<td>5</td>
<td>8</td>
<td>23</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mukwiche</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Five Finger</td>
<td>350</td>
<td>18</td>
<td>13</td>
<td>16</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Radford Roost</td>
<td>38</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Icicle Bench</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lott's Farm</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Median Village</td>
<td>195</td>
<td>4</td>
<td>2</td>
<td>54</td>
<td>76</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Evans Mound</td>
<td>530</td>
<td>54</td>
<td>2</td>
<td>7</td>
<td>176</td>
<td>43</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Caldwell Village</td>
<td>99</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>13</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>White Rocks</td>
<td>23</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wholeplace Village</td>
<td>14</td>
<td>59</td>
<td>2</td>
<td>1</td>
<td>13</td>
<td>171</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Snake Rock</td>
<td>132</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>47</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Poplar Knob</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Old Woman</td>
<td>32</td>
<td>6</td>
<td>32</td>
<td>137</td>
<td>171</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Turner-Look</td>
<td>158</td>
<td>6</td>
<td>32</td>
<td>137</td>
<td>171</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Round Spring</td>
<td>156</td>
<td>7</td>
<td>59</td>
<td>14</td>
<td>56</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Coombs Village</td>
<td>129</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>
goods is present with the Hopi to the south of the Fremont. Ford (1983) documents trade in ceramic vessels, both utilitarian and decorated, among the Hopi and between the Hopi and other tribes. Intervillage or intertribal trade required the transport of pots by either the producers or the consumers, but in all cases, transport would have been by individuals on foot. In the context of this question and the Hopi example, it is hard to ignore the so-called “backpacker” or humpback anthropomorphs in rock art panels often attributed to Anasazi and Fremont (Fig. 14) (Cole, 1990: various, but see Plate 60, p. 154; Schaasma, 1994, p. 60). Such panels often depict groups of individuals, almost resembling pack trains, with burdens on their backs as though transporting material goods across the landscape.

Archaeological contexts for exotics: Fremont and Anasazi contrasts

The Southwest analogue often invoked here must be applied at a distance given the limited information on Fremont social and religious practices and demonstrable differences in Anasazi and Fremont contexts for exotics. An example of Fremont-Southwest contrasts is the scarcity of exotics (and goods in general) in Fremont burials, a pattern differing markedly from Anasazi mortuary practices which typically included burial goods (see Neitzel, 1989 and below). These differences raise interesting questions, one of which asks what the Fremont considered valuable. The assumption here has been that exotics (especially turquoise and Olivella shell) obtained through trade are valuable and prestige enhancing. One might expect, therefore, that exotics would be present in Fremont burials of higher status individuals. That does not appear to be the case, however. Fremont burial goods tend to be sparse (less than 15% of all burials have offerings) and only two of 186 reported Fremont burials (post AD 500) contained exotics, both single Olivella shell beads (Janetski and Talbot, 1997; see also Roberts, 1991). Two of the 186 burials (not the two just mentioned) appear to be individuals of either higher or at least a different status. All three are adult males and all contain significantly higher quantities of burial offerings than other burials with goods. However, no exotics are present in the burial assemblages from these three interments. Rather, birds or birdskins (only local species have been identified), ground stone, ceramic vessels (both miniature and regular sized, but all of local manufacture), clay figurines, complete projectile points, and apparently foodstuffs and other miscellaneous (again, local in origin) objects are present in the burial pit or closely associated with it. This pattern suggests these individuals had achieved special status, perhaps as shamans, and that status was marked in death by their peers.

Rather than being recovered from burial contexts, Fremont exotics occur on house floors or in fill, apparently as a consequence of loss or perhaps discard of broken pieces. No caches of exotics have been reported. The increase in the numbers of labor-rich and information-rich craft items (beads, pendants of all kinds of materials) (Clark and Parry, 1990) during Fremont times and the greater than expected association of those items with larger houses provides a basis for proposing an

Fig. 13. Examples of bone gaming pieces or dice from Fremont sites.

Fig. 14. Backpacker figures on rock art panel in Capitol Reef National Park. (Drawn from photo loaned by Lee Kreutzer.)

2 This statement is offered with the following caveat. Burials in the Uintah Basin dated to AD 100–300 contained Olivella and Dentalium shell beads as well as hundreds of bone beads (Talbot and Richens, 1996). These burials, which were in bell-shaped pits, are preceramic and were therefore not included in these generalizations about Fremont burial patterns. Of course, this raises issues about what and when is Fremont, a topic of importance but too broad for this paper.
emerging concern with prestige building among the Fremont (Janetski and Talbot, 1997). The usually mundane contexts for these exotics, however, suggest that the goods were not laden with social, political, or ideological symbolism. Intriguing evidence to the contrary includes the previously mentioned *Olivella* shell look-alike beads from Five Finger Ridge (Fig. 8). Both preforms and finished beads of calcite occurred here and suggest local production. If this interpretation is correct, that is, Fremont were mimicking exotics, one could argue that *Olivella* was both scarce and valued.

As noted, the rarity of exotic goods in Fremont burials is in stark contrast with patterns at contemporary Anasazi sites. All exotics increase dramatically in Anasazi sites to the south (Lyneis, 1992; Shutler, 1961) and there are sharp differences in contexts. As noted, *Olivella* and turquoise in Fremont sites are almost always found in residential structures and rarely in burials. But Anasazi residences along the Virgin River (Dalley and McFadden, 1985; Shutler, 1961; Walling et al., 1986) as well as further east near Kanab (Aikens, 1965; Nickens and Kvaamme, 1981), have yielded few exotics. Anasazi burials, on the other hand, contain relatively massive quantities of shell and other goods and the shift occurs in dramatic fashion as one moves south from the Fremont region into the Virgin and Colorado River drainages. Walling et al. (1986) report marine shell ornaments (*Halioitis* and *Glycymeris*) and turquoise beads in small quantities from burials along Quail Creek just south of the large Fremont sites in Parowan Valley. At Willow Beach on the Colorado River in northeast Arizona a single (apparently Anasazi) burial (Burial 2) contained 860 *Olivella* beads (Schoeder, 1961), more than all the *Olivella* found to date in the Fremont region.

And Lost City [a Virgin Anasazi site in southern Nevada (Fig. 3)] burials contained large quantities of marine shell and often turquoise (Lyneis, 1992a; Shutler, 1961). Of 289 Lost City burials, at least 45 contained either turquoise or marine shell (Shutler, 1961, pp. 44–49). *Olivella* was by far the most common, although numbers are hard to fix as data are often in the form of “many” or “jar of beads” (see Lyneis, 1992a, Table 65). In addition to quantities of marine shell increasing in Anasazi sites, the variety increases with *Halioitis*, *Glycymeris*, *Conus*, and “clam” shells found rather commonly (Lyneis, 1992a).

At Coombs Village, a Kayenta Anasazi site in south central Utah considered within the Fremont region, burials yielded a necklace of 122 *Olivella* shell beads and a wristlet containing stone and small, unidentified shell beads (Lister et al., 1960). Turquoise also occurred in greater absolute quantities, in differing contexts, and in more variable stages of manufacture at Coombs than seen at Fremont sites (Table 2). To date over 200 turquoise items, mostly small pendants or beads are documented from Coombs and nearly all came from burials (Lister et al., 1960; Larry Davis, personal communication 2000). Recent analysis of the collections by the author documented evidence of on-site turquoise pendant production in the form of preforms and production by-products, both turquoise powder or paste and small fragments. Prince et al. (1997, p. 125) report that 11 turquoise samples submitted for chemical analysis appear to all be from the same source, although they don’t speculate what that source might be.

What can be made of these stark differences in the distribution and quantities of exotics in Anasazi and Fremont sites? Explanations could take the form of a simple proximity argument: the Anasazi simply had better access (i.e., they were closer) to marine shell and turquoise sources, therefore these items are more common in Anasazi sites. Or perhaps the Anasazi were operating within a different kind of social and political structure. Rafferty (1990), for example, has argued that the burial data argue for a ranked society operating at Lost City; if so, the accumulation of goods to mark differential status makes sense. Lyneis (1992b), however, has systematically refuted Rafferty’s claim for ranking and argued that the distribution of burial goods is typical of egalitarian societies “…in which the differences among burials reflects differences by age, sex and…achievement” (Lyneis, 1992b, p. 210). As mentioned, Fremont scholars have also characterized the Fremont as egalitarian with some evidence of achieved status and emerging social differentiation (for example, Hockett, 1998; Janetski and Talbot, 1997, p. 327). If one accepts some degree of social and political similarity in Fremont and Anasazi societies, the differences in treatment of the dead would be evidence of contrasting ideologies, a conclusion supported by other material differences such as the widespread occurrence of anthropomorphic figurines in the Fremont area (however, see Wilde and Soper, 1999, p. 244). It is certainly the case that *Olivella*, turquoise, and other objects exotic to the Fremont area but present in Fremont sites were available from the Anasazi to the south and are the most logical source of such items.
Conclusions

The above descriptions conjure up images of social and economic interactions. Trade offered means for provisioning in times of subsistence shortfall (Upham, 1982), although, as mentioned, caution should be taken to avoid an overemphasis of the economic impacts of the exchange of goods. Rather the social, and to a lesser extent the political, aspects of exchange in egalitarian (including simple segmentary) societies should be considered important motivations as well (see, for example, discussions in Speth, 1991). Sahlins (1972, pp. 186–187) makes this clear when he states “A material transaction is usually a momentary episode in a continuous social relation.” Gift exchange then is a means of maintaining social stability in acephalous societies. As noted earlier, Madsen and Simms (various, see especially Madsen and Simms, 1998) have argued for farmer and forager strategies operating concurrently during the Fremont period. If so, Fremont social circumstances may have been analogous to the ethnographically documented Southwest where Puebloan farmers co-existed in tension with hunting and gathering peoples (see above and introductory Tewa song), yet regularly exchanged goods with those groups in a kind of mutualistic relationship (Spielmann various, but see 1991). Exchange and gifting in the context of regular, structured events may have played a role in mediating relations among Fremont groups who may have been as ethnically varied as the Southwestern farmers and hunters.

This paper has proposed several contexts for Fremont exchange relying heavily on ethno- graphic models borrowed from the Puebloan and Great Basin areas. These include encounter exchange, gifting for varying purposes, gambling, and festivals. A conservative interpretation of the archaeological data, which suggests a fall off in absolute numbers of exotics from south to north, would be that a down-the-line mechanism such as encounter exchange was a primary mechanism operating in the past. However, when numbers are adjusted to compensate for sample size effects and the ubiquity of gambling paraphernalia considered, it seems that cultural processes other than simple encounter exchange is responsible for much of the patterning and a trade fair/festival model is proposed as an additional mechanism for the movement of goods.

The data presented here provide the basis for several conclusions: (1) both local and long distance trade occurred during the Fremont period; (2) long distance exchange relations, as suggested by the distribution of exotics were primarily with Southwestern contemporaries; (3) mechanisms for both community and long distance trade may have included both regular festivals and encounter exchange; (4) between AD 500 or so and 1300, quantities of exotics, and perhaps trade generally, increased in the Fremont region, a tendency that may reflect increasing sedentism concomitant with a growing commitment to farming (Earle, 1994, p. 422). This period is largely coincident with the development, expansion, and eventual contraction of Southwest farming societies and argues that a perspective that includes the Fremont in the larger Southwest region is useful in understanding Fremont culture history and process. Finally, (5) the differential disposition of exotics in Fremont and Kayenta/Virgin Anasazi contexts supports an argument for a sharp rather than a soft boundary between these groups as suggested by Madsen (1982); see Geib, 1996; Lyneis, 1992; Thompson and Allison, 1988 for material support of a sharp boundary. On a different note and scale, this discussion of the Fremont and their Anasazi neighbors is remarkable in that these two small-scale societies may have been at once quite similar and quite different. Material culture is similar in a general way, both farmed, and both are considered egalitarian. Contrasts occur in the burial patterns and kinds of goods cached, with the Anasazi much more prone to include exotics with the dead and to horde such items. Such variation is indicative of the complexities of understanding archaeologically defined, small-scale groups whose social and political structure lies somewhere in that hazy and enormous gulf between bands and states (Gregg, 1991).

Acknowledgments

Many have read and offered comments and encouragements on this paper over several years. John Clark Richard Hughes, Byron Loosle, David Madsen, Ray Matheny, and Rich Talbot are

3 The Anasazi reference here is to the Virgin and Kayenta branches only. Rather stark differences are present with the Anasazi patterns in the Mesa Verde and Chaco areas. (Be referred, for example, to various references in a volume 66 of American Antiquity for an excellent discussion of Chacoan economic life).
among those who provided specific suggestions and prodding to publish. Suggestions by anonymous reviewers resulted in significant improvements and I thank them for their time. Of course, I accept blame for this final version and for failure to mention others who may have read and commented on the paper.

References cited

Adams, P., 1996. Fish Lake obsidian analysis. Ms on file, Department of Anthropology, Brigham Young University, Provo.

Burnside, R.C., 2000. XRF sourcing of Fremont and late prehistoric obsidian. Ms on file, Department of Anthropology, Brigham Young University, Provo.

